Circuits that encode and guide alcohol associated preference

Kristin M. Scaplen¹, Mustafa Talay¹, Sarah Salamon⁴, Kevin Nuñez², Amanda G. Waterman¹, Sydney Gang³, Sophia L. Song¹, Gilad Barnea¹, Karla R. Kaun¹
¹Dept of Neuroscience, ²Dept of Molecular Pharmacology and Physiology, ³Dept of Biochemistry, Brown University, Providence RI, U.S.A., ⁴University of Cologne, Cologne, Germany

Drosophila neural circuits that mediate reward learning are similar to other species.

- Functional circuits between dopamine neurons and glutamate, GABA and acetylcholine neurons underlie responses to reward and punishment (Scaplen & Kaun 2016).
- The *Drosophila* Mushroom Body (MB), a central brain associative structure, is densely innervated and compartmentalized by dopaminergic input and glutamatergic, GABAergic and cholinergic output neurons (Aso et al. 2014).

Drosophila exhibit enduring preference for cues associated with alcohol intoxication.

- Flies will withstand 120V shock to reach alcohol associated cues (Kaun et al. 2011).
- Alcohol reward memories last up to 7 days and require the MB and dopamine (Kaun et al. 2011).

Expression of alcohol reward requires a remarkably complex multi level circuit of dopaminergic, glutamatergic, and cholinergic neurons, which converges within and outside the MB.

Conclusions

- Alcohol reward memory require population level dopamine modulation that increases with prolonged alcohol exposure.
- The expression of memories requires two discrete microcircuits within the vertical and horizontal lobes.
- Microcircuits converge on a glutamate neuron important for consolidation and dorsal layers of the Fan Shaped Body (FSB).
- Within identified reward circuits that span across brain regions we can now layer molecular questions about how receptors change within this circuit with experience.